Open In App

Connect nodes at same level using constant extra space

Improve
Improve
Like Article
Like
Save
Share
Report

Write a function to connect all the adjacent nodes at the same level in a binary tree. The structure of the given Binary Tree node is like following

C++




struct node{
    int data;
    struct node* left;
    struct node* right;
    struct node* nextRight;
};
 
// This code is contributed by Yash Agarwal(yashagarwal2852002)


C




struct node {
  int data;
  struct node* left;
  struct node* right;
  struct node* nextRight;
}


Java




static class node {
  int data;
  node left;
  node right;
  node nextRight;
}
 
// This code is contributed by umadevi9616


Python3




class newnode:
    def __init__(self,data):
        self.data = data
        self.left = None
        self.right = None
        self.nextRight = None
         
# this code is contributed by shivanisinghss2110


C#




public class Node
{
    public int data;
    public Node left;
    public Node right;
    public Node nextRight;
}
 
// this code is contributed by shivanisinghss2110


Javascript




class node {
 
    constructor()
    {
       this.data = 0;
       this.left = null;
       this.right = null;
       this.nextRight = null;
    }
}
 
// This code is contributed by importantly.


Initially, all the nextRight pointers point to garbage values. Your function should set these pointers to point next right for each node. You can use only constant extra space.

Example: 

Input Tree
       A
      / \
     B   C
    / \   \
   D   E   F

Output Tree
       A--->NULL
      / \
     B-->C-->NULL
    / \   \
   D-->E-->F-->NULL

We discussed two different approaches to do it in the previous post. The auxiliary space required in both of those approaches is not constant. Also, method 2 discussed there only works for a complete Binary Tree. 

In this post, we will first modify method 2 to make it work for all kinds of trees. After that, we will remove recursion from this method so that the extra space becomes constant.

A Recursive Solution 

In method 2 of previous post, we traversed the nodes in pre-order fashion. Instead of traversing in Pre Order fashion (root, left, right), if we traverse the nextRight node before the left and right children (root, nextRight, left), then we can make sure that all nodes at level i have the nextRight set, before the level i+1 nodes. Let us consider the following example (same example as previous post). Method 2 fails for right child of node 4. In this method, we make sure that all nodes at the 4’s level (level 2) have nextRight set, before we try to set the nextRight of 9. So when we set the nextRight of 9, we search for a nonleaf node on right side of node 4 (getNextRight() does this for us).
 

            1            -------------- Level 0
          /    \
        2        3       -------------- Level 1
       / \      /  \
      4   5    6    7    -------------- Level 2
     / \           / \
    8   9        10   11 -------------- Level 3

C++




// THIS CODE IS CONTRIBUTED BY YASH AGARWAL
#include<bits/stdc++.h>
using namespace std;
  
class Node {
 public:
    int data;
    Node *left, *right, *nextRight;
    Node(int item){
        data = item;
        left = right = nextRight = nullptr;
    }
};
   
class BinaryTree{
    public:
    Node *root;
    BinaryTree(){
      root = nullptr;
    }
  
    void connectRecur(Node *p) {
        // Base case
        if (p == NULL) return;
        /* Before setting nextRight of left and right children, set nextRight
           of children of other nodes at same level (because we can access
           children of other nodes using p's nextRight only) */
        if (p->nextRight)
            connectRecur(p->nextRight);
  
        /* Set the nextRight pointer for p's left child */
        if (p->left) {
            if (p->right) {
                p->left->nextRight = p->right;
                p->right->nextRight = getNextRight(p);
            }else{
                p->left->nextRight = getNextRight(p);
            }
            // Recursively call for next level nodes.Note that we call only
            // left child. The call for left child will call for right child
            connectRecur(p->left);
        }
  
        /* If left child is NULL then first node of next level will either be
           p->right or getNextRight(p) */
        else if (p->right) {
            p->right->nextRight = getNextRight(p);
            connectRecur(p->right);
        } else
            connectRecur(getNextRight(p));
    }
  
    // This function returns the leftmost child of nodes at the same level
    // as p. This function is used to getNExt right of p's right childIf
    // right child of p is NULL then this can also be used for the left child
    Node *getNextRight(Node *p) {
        Node *temp = p->nextRight;
  
        /* Traverse nodes at p's level and find and return
         the first node's first child */
        while (temp) {
            if (temp->left)
                return temp->left;
            if (temp->right)
                return temp->right;
            temp = temp->nextRight;
        }
  
        // If all the nodes at p's level are leaf nodes then return NULL
        return nullptr;
    }
  
    void connect() {
        // Set the nextRight for root
        root->nextRight = nullptr;
  
        // Set the next right for rest of the
        // nodes (other than root)
        connectRecur(root);
    }
};
  
int main()
{
    BinaryTree tree;
    tree.root = new Node(10);
    tree.root->left = new Node(8);
    tree.root->right = new Node(2);
    tree.root->left->left = new Node(3);
    tree.root->right->right = new Node(90);
  
    // Populates nextRight pointer in all nodes
    tree.connectRecur(tree.root);
  
    // Let us check the values of nextRight pointers
    int a = tree.root->nextRight != NULL ? tree.root->nextRight->data : -1;
    int b = tree.root->left->nextRight != NULL ? tree.root->left->nextRight->data : -1;
    int c = tree.root->right->nextRight != NULL ? tree.root->right->nextRight->data : -1;
    int d = tree.root->left->left->nextRight != NULL ? tree.root->left->left->nextRight->data : -1;
    int e = tree.root->right->right->nextRight != NULL ? tree.root->right->right->nextRight->data : -1;
  
    // Now lets print the values
    cout << "Following are populated nextRight pointers in the tree(-1 is printed if there is no nextRight) \n"
        << "nextRight of " << tree.root->data << " is " << a << "\n"
        << "nextRight of " << tree.root->left->data << " is " << b << "\n"
        << "nextRight of " << tree.root->right->data << " is " << c << "\n"
        << "nextRight of " << tree.root->left->left->data << " is " << d << "\n"
        << "nextRight of " << tree.root->right->right->data << " is " << e << "\n";
  
    return 0;
}


C




// Recursive C program to connect nodes at same level
// using constant extra space
void connectRecur(struct node* p);
struct node *getNextRight(struct node *p);
 
// Sets the nextRight of root and calls
// connectRecur() for other nodes
void connect (struct node *p)
{
    // Set the nextRight for root
    p->nextRight = NULL;
 
    // Set the next right for rest of the
    // nodes (other than root)
    connectRecur(p);
}
 
/* Set next right of all descendants of p.
   This function makes sure that
   nextRight of nodes at level i is set
   before level i+1 nodes. */
void connectRecur(struct node* p)
{
    // Base case
    if (!p)
       return;
 
    /* Set the nextRight pointer for p's left child */
    if (p->left)
    {
       if (p->right)
       {
           p->left->nextRight = p->right;
           p->right->nextRight = getNextRight(p);
           connectRecur(p->right);
       }
       else
           p->left->nextRight = getNextRight(p);
 
       /* Recursively call for next level nodes.
          Note that we call only for left child.
          The call for left child will call for right child */
       connectRecur(p->left);
    }
 
    /* If left child is NULL then first node of
       next level will either be
       p->right or getNextRight(p) */
    else if (p->right)
    {
        p->right->nextRight = getNextRight(p);
        connectRecur(p->right);
    }
}
 
/* This function returns the leftmost child of nodes
   at the same level as p. This function is used to
   getNExt right of p's right child If right child
   of p is NULL then this can also be used for the left child */
struct node *getNextRight(struct node *p)
{
    struct node *temp = p->nextRight;
 
    /* Traverse nodes at p's level and find and return
       the first node's first child */
    while(temp != NULL)
    {
        if(temp->left != NULL)
            return temp->left;
        if(temp->right != NULL)
            return temp->right;
        temp = temp->nextRight;
    }
 
    // If all the nodes at p's level are leaf
    // nodes then return NULL
    return NULL;
}


Java




// Recursive Java program to connect nodes at same level
// using constant extra space
  
// A binary tree node
class Node
{
    int data;
    Node left, right, nextRight;
  
    Node(int item)
    {
        data = item;
        left = right = nextRight = null;
    }
}
  
class BinaryTree
{
    Node root;
  
    /* Set next right of all descendants of p. This function makes sure that
       nextRight of nodes at level i is set before level i+1 nodes. */
    void connectRecur(Node p)
    {
        // Base case
        if (p == null)
            return;
  
        /* Before setting nextRight of left and right children, set nextRight
           of children of other nodes at same level (because we can access
           children of other nodes using p's nextRight only) */
        if (p.nextRight != null)
            connectRecur(p.nextRight);
  
        /* Set the nextRight pointer for p's left child */
        if (p.left != null)
        {
            if (p.right != null)
            {
                p.left.nextRight = p.right;
                p.right.nextRight = getNextRight(p);
            }
            else
                p.left.nextRight = getNextRight(p);
  
            /* Recursively call for next level nodes.  Note that we call only
             for left child. The call for left child will call for right child */
            connectRecur(p.left);
        }
          
        /* If left child is NULL then first node of next level will either be
         p->right or getNextRight(p) */
        else if (p.right != null)
        {
            p.right.nextRight = getNextRight(p);
            connectRecur(p.right);
        }
        else
            connectRecur(getNextRight(p));
    }
  
    /* This function returns the leftmost child of nodes at the same
       level as p. This function is used to getNExt right of p's right child
       If right child of p is NULL then this can also be used for
       the left child */
    Node getNextRight(Node p)
    {
        Node temp = p.nextRight;
  
        /* Traverse nodes at p's level and find and return
         the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
                return temp.left;
            if (temp.right != null)
                return temp.right;
            temp = temp.nextRight;
        }
  
        // If all the nodes at p's level are leaf nodes then return NULL
        return null;
    }
  
    /* Driver program to test the above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.right.right = new Node(90);
  
        // Populates nextRight pointer in all nodes
        tree.connectRecur(tree.root);
  
        // Let us check the values of nextRight pointers
        int a = tree.root.nextRight != null ?
                          tree.root.nextRight.data : -1;
        int b = tree.root.left.nextRight != null ?
                          tree.root.left.nextRight.data : -1;
        int c = tree.root.right.nextRight != null ?
                            tree.root.right.nextRight.data : -1;
        int d = tree.root.left.left.nextRight != null ?
                        tree.root.left.left.nextRight.data : -1;
        int e = tree.root.right.right.nextRight != null ?
                        tree.root.right.right.nextRight.data : -1;
          
        // Now lets print the values
        System.out.println("Following are populated nextRight pointers in "
                + " the tree(-1 is printed if there is no nextRight)");
        System.out.println("nextRight of " + tree.root.data + " is " + a);
        System.out.println("nextRight of " + tree.root.left.data + " is " + b);
        System.out.println("nextRight of " + tree.root.right.data + " is " + c);
        System.out.println("nextRight of " + tree.root.left.left.data +
                                                              " is " + d);
        System.out.println("nextRight of " + tree.root.right.right.data +
                                                              " is " + e);
    }
}
 
// This code has been contributed by Mayank Jaiswal


Python3




# Recursive Python program to connect nodes
# at same level using constant extra space
 
# Helper class that allocates a new node
# with the given data and None left and
# right pointers.
class newnode:
    def __init__(self,data):
        self.data = data
        self.left = None
        self.right = None
        self.nextRight = None
         
 
# Set next right of all descendants of p. This function makes sure that
# nextRight of nodes at level i is set before level i+1 nodes. */
def connectRecur( p) :
     
    # Base case
    if p == None :
        return
   
    # Before setting nextRight of left and right children, set nextRight
    # of children of other nodes at same level (because we can access
    # children of other nodes using p's nextRight only) */
    if p.nextRight != None :
        connectRecur(p.nextRight)
   
    # Set the nextRight pointer for p's left child */
    if p.left != None :
         
        if p.right != None :
             
            p.left.nextRight = p.right
            p.right.nextRight = getNextRight(p)
             
        else :
            p.left.nextRight = getNextRight(p)
   
        # Recursively call for next level nodes.  Note that we call only
        # for left child. The call for left child will call for right child */
        connectRecur(p.left)
         
           
        # If left child is NULL then first node of next level will either be
        # p->right or getNextRight(p) */
    elif p.right != None :
         
        p.right.nextRight = getNextRight(p)
        connectRecur(p.right)
         
    else :
        connectRecur(getNextRight(p))
 
   
   
# This function returns the leftmost child of
# nodes at the same level as p. This function
# is used to getNExt right of p's right child
# If right child of is None then this can also
# be used for the left child
def getNextRight(p):
    temp = p.nextRight
 
    # Traverse nodes at p's level and find
    # and return the first node's first child
    while (temp != None):
        if (temp.left != None):
            return temp.left
        if (temp.right != None):
            return temp.right
        temp = temp.nextRight
 
    # If all the nodes at p's level are
    # leaf nodes then return None
    return None
 
# Driver Code
if __name__ == '__main__':
 
    # Constructed binary tree is
    #         10
    #     / \
    #     8     2
    # /         \
    # 3         90
    root = newnode(10)
    root.left     = newnode(8)
    root.right     = newnode(2)
    root.left.left = newnode(3)
    root.right.right     = newnode(90)
 
    # Populates nextRight pointer in all nodes
    connectRecur(root)
 
    # Let us check the values of nextRight pointers
    print("Following are populated nextRight "
        "pointers in the tree (-1 is printed "
        "if there is no nextRight) \n")
    print("nextRight of", root.data,
                    "is", end = " ")
    if root.nextRight:
        print(root.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.left.data,
                        "is", end = " ")
    if root.left.nextRight:
        print(root.left.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.right.data,
                        "is", end = " ")
    if root.right.nextRight:
        print(root.right.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.left.left.data,
                            "is", end = " ")
    if root.left.left.nextRight:
        print(root.left.left.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.right.right.data,
                                "is", end = " ")
    if root.right.right.nextRight:
        print(root.right.right.nextRight.data)
    else:
        print(-1)
 
# This code is contributed by jana_sayantan.


C#




using System;
 
// Recursive C# program to connect nodes at same level
// using constant extra space
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right, nextRight;
 
    public Node(int item)
    {
        data = item;
        left = right = nextRight = null;
    }
}
 
public class BinaryTree
{
    public Node root;
 
    /* Set next right of all descendants of p. This function makes sure that
       nextRight of nodes at level i is set before level i+1 nodes. */
    public virtual void connectRecur(Node p)
    {
        // Base case
        if (p == null)
        {
            return;
        }
 
        /* Before setting nextRight of left and right children, set nextRight
           of children of other nodes at same level (because we can access 
           children of other nodes using p's nextRight only) */
        if (p.nextRight != null)
        {
            connectRecur(p.nextRight);
        }
 
        /* Set the nextRight pointer for p's left child */
        if (p.left != null)
        {
            if (p.right != null)
            {
                p.left.nextRight = p.right;
                p.right.nextRight = getNextRight(p);
            }
            else
            {
                p.left.nextRight = getNextRight(p);
            }
 
            /* Recursively call for next level nodes.  Note that we call only
             for left child. The call for left child will call for right child */
            connectRecur(p.left);
        }
 
        /* If left child is NULL then first node of next level will either be
         p->right or getNextRight(p) */
        else if (p.right != null)
        {
            p.right.nextRight = getNextRight(p);
            connectRecur(p.right);
        }
        else
        {
            connectRecur(getNextRight(p));
        }
    }
 
    /* This function returns the leftmost child of nodes at the same
       level as p. This function is used to getNExt right of p's right child
       If right child of p is NULL then this can also be used for 
       the left child */
    public virtual Node getNextRight(Node p)
    {
        Node temp = p.nextRight;
 
        /* Traverse nodes at p's level and find and return
         the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
            {
                return temp.left;
            }
            if (temp.right != null)
            {
                return temp.right;
            }
            temp = temp.nextRight;
        }
 
        // If all the nodes at p's level are leaf nodes then return NULL
        return null;
    }
 
    /* Driver program to test the above functions */
    public static void Main(string[] args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.right.right = new Node(90);
 
        // Populates nextRight pointer in all nodes
        tree.connectRecur(tree.root);
 
        // Let us check the values of nextRight pointers
        int a = tree.root.nextRight != null ? tree.root.nextRight.data : -1;
        int b = tree.root.left.nextRight != null ? tree.root.left.nextRight.data : -1;
        int c = tree.root.right.nextRight != null ? tree.root.right.nextRight.data : -1;
        int d = tree.root.left.left.nextRight != null ? tree.root.left.left.nextRight.data : -1;
        int e = tree.root.right.right.nextRight != null ? tree.root.right.right.nextRight.data : -1;
 
        // Now lets print the values
        Console.WriteLine("Following are populated nextRight pointers in the tree(-1 is printed if there is no nextRight)");
        Console.WriteLine("nextRight of " + tree.root.data + " is " + a);
        Console.WriteLine("nextRight of " + tree.root.left.data + " is " + b);
        Console.WriteLine("nextRight of " + tree.root.right.data + " is " + c);
        Console.WriteLine("nextRight of " + tree.root.left.left.data + " is " + d);
        Console.WriteLine("nextRight of " + tree.root.right.right.data + " is " + e);
    }
}
 
  // This code is contributed by Shrikant13


Javascript




<script>
// Recursive javascript program to connect nodes at same level
// using constant extra space
  
// A binary tree node
class Node {
        constructor(val) {
            this.data = val;
            this.left = null;
            this.right = null;
            this.nextRight = null;
        }
    }
  
var root;
  
    /* Set next right of all descendants of p. This function makes sure that
       nextRight of nodes ar level i is set before level i+1 nodes. */
    function connectRecur(p)
    {
        // Base case
        if (p == null)
            return;
  
        /* Before setting nextRight of left and right children, set nextRight
           of children of other nodes at same level (because we can access
           children of other nodes using p's nextRight only) */
        if (p.nextRight != null)
            connectRecur(p.nextRight);
  
        /* Set the nextRight pointer for p's left child */
        if (p.left != null)
        {
            if (p.right != null)
            {
                p.left.nextRight = p.right;
                p.right.nextRight = getNextRight(p);
            }
            else
                p.left.nextRight = getNextRight(p);
  
            /* Recursively call for next level nodes.  Note that we call only
             for left child. The call for left child will call for right child */
            connectRecur(p.left);
        }
          
        /* If left child is NULL then first node of next level will either be
         p->right or getNextRight(p) */
        else if (p.right != null)
        {
            p.right.nextRight = getNextRight(p);
            connectRecur(p.right);
        }
        else
            connectRecur(getNextRight(p));
    }
  
    /* This function returns the leftmost child of nodes at the same
       level as p. This function is used to getNExt right of p's right child
       If right child of p is NULL then this can also be used for
       the left child */
    function getNextRight(p)
    {
        var temp = p.nextRight;
  
        /* Traverse nodes at p's level and find and return
         the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
                return temp.left;
            if (temp.right != null)
                return temp.right;
            temp = temp.nextRight;
        }
  
        // If all the nodes at p's level are leaf nodes then return NULL
        return null;
    }
  
    /* Driver program to test the above functions */
 
        var root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.right.right = new Node(90);
  
        // Populates nextRight pointer in all nodes
        connectRecur(root);
  
        // Let us check the values of nextRight pointers
        var a = root.nextRight != null ?
                          root.nextRight.data : -1;
        var b = root.left.nextRight != null ?
                          root.left.nextRight.data : -1;
        var c = root.right.nextRight != null ?
                            root.right.nextRight.data : -1;
        var d = root.left.left.nextRight != null ?
                        root.left.left.nextRight.data : -1;
        var e = root.right.right.nextRight != null ?
                        root.right.right.nextRight.data : -1;
          
        // Now lets print the values
        document.write("Following are populated nextRight pointers in "
                + " the tree(-1 is printed if there is no nextRight)");
        document.write("<br/>nextRight of " + root.data + " is " + a);
        document.write("<br/>nextRight of " + root.left.data + " is " + b);
        document.write("<br/>nextRight of " + root.right.data + " is " + c);
        document.write("<br/>nextRight of " + root.left.left.data +
                                                              " is " + d);
        document.write("<br/>nextRight of " + root.right.right.data +
                                                              " is " + e);
 
// This code is contributed by umadevi9616
</script>


Output:  

Following are populated nextRight pointers in the tree (-1 is printed if 
there is no nextRight)
nextRight of 10 is -1
nextRight of 8 is 2
nextRight of 2 is -1
nextRight of 3 is 90
nextRight of 90 is -1

Time Complexity : O(n)
Auxiliary Space: O(1)

An Iterative Solution :
The recursive approach discussed above can be easily converted to iterative. In the iterative version, we use nested loop. The outer loop, goes through all the levels and the inner loop goes through all the nodes at every level. This solution uses constant space. 

C++




// Iterative CPP program to connect
// nodes at same level using
// constant extra space
#include<bits/stdc++.h>
#include<bits/stdc++.h>
using namespace std;
 
class node
{
    public:
    int data;
    node* left;
    node* right;
    node *nextRight;
     
    /* Constructor that allocates a new node with the
    given data and NULL left and right pointers. */
    node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
        this->nextRight = NULL;
    }
};
 
/* This function returns the leftmost
child of nodes at the same level as p.
This function is used to getNExt right
of p's right child  If right child of
is NULL then this can also be used for
the left child */
node *getNextRight(node *p)
{
    node *temp = p->nextRight;
 
    /* Traverse nodes at p's level
    and find and return the first
    node's first child */
    while (temp != NULL)
    {
        if (temp->left != NULL)
            return temp->left;
        if (temp->right != NULL)
            return temp->right;
        temp = temp->nextRight;
    }
 
    // If all the nodes at p's level
    // are leaf nodes then return NULL
    return NULL;
}
 
/* Sets nextRight of all nodes
of a tree with root as p */
void connectRecur(node* p)
{
    node *temp;
 
    if (!p)
    return;
 
    // Set nextRight for root
    p->nextRight = NULL;
 
    // set nextRight of all levels one by one
    while (p != NULL)
    {
        node *q = p;
 
        /* Connect all children nodes of p and
        children nodes of all other nodes at
        same level as p */
        while (q != NULL)
        {
            // Set the nextRight pointer
            // for p's left child
            if (q->left)
            {
                // If q has right child, then
                // right child is nextRight of
                // p and we also need to set
                // nextRight of right child
                if (q->right)
                    q->left->nextRight = q->right;
                else
                    q->left->nextRight = getNextRight(q);
            }
 
            if (q->right)
                q->right->nextRight = getNextRight(q);
 
            // Set nextRight for other
            // nodes in pre order fashion
            q = q->nextRight;
        }
 
        // start from the first
        // node of next level
        if (p->left)
            p = p->left;
        else if (p->right)
            p = p->right;
        else
            p = getNextRight(p);
    }
}
 
 
/* Driver code*/
int main()
{
 
    /* Constructed binary tree is
            10
            / \
        8 2
        /     \
    3     90
    */
    node *root = new node(10);
    root->left = new node(8);
    root->right = new node(2);
    root->left->left = new node(3);
    root->right->right     = new node(90);
 
    // Populates nextRight pointer in all nodes
    connectRecur(root);
 
    // Let us check the values of nextRight pointers
    cout << "Following are populated nextRight pointers in the tree"
        " (-1 is printed if there is no nextRight) \n";
    cout << "nextRight of " << root->data << " is "
        << (root->nextRight? root->nextRight->data: -1) <<endl;
    cout << "nextRight of " << root->left->data << " is "
        << (root->left->nextRight? root->left->nextRight->data: -1) << endl;
    cout << "nextRight of " << root->right->data << " is "
        << (root->right->nextRight? root->right->nextRight->data: -1) << endl;
    cout << "nextRight of " << root->left->left->data<< " is "
        << (root->left->left->nextRight? root->left->left->nextRight->data: -1) << endl;
    cout << "nextRight of " << root->right->right->data << " is "
        << (root->right->right->nextRight? root->right->right->nextRight->data: -1) << endl;
    return 0;
}
 
// This code is contributed by rathbhupendra


C




// Iterative C program to connect nodes at same level
// using constant extra space
#include <stdio.h>
#include <stdlib.h>
 
struct node
{
    int data;
    struct node *left;
    struct node *right;
    struct node *nextRight;
};
 
/* This function returns the leftmost child of nodes at the same level as p.
   This function is used to getNExt right of p's right child
   If right child of is NULL then this can also be used for the left child */
struct node *getNextRight(struct node *p)
{
    struct node *temp = p->nextRight;
 
    /* Traverse nodes at p's level and find and return
       the first node's first child */
    while (temp != NULL)
    {
        if (temp->left != NULL)
            return temp->left;
        if (temp->right != NULL)
            return temp->right;
        temp = temp->nextRight;
    }
 
    // If all the nodes at p's level are leaf nodes then return NULL
    return NULL;
}
 
/* Sets nextRight of all nodes of a tree with root as p */
void connect(struct node* p)
{
    struct node *temp;
 
    if (!p)
      return;
 
    // Set nextRight for root
    p->nextRight = NULL;
 
    // set nextRight of all levels one by one
    while (p != NULL)
    {
        struct node *q = p;
 
        /* Connect all children nodes of p and children nodes of all other nodes
          at same level as p */
        while (q != NULL)
        {
            // Set the nextRight pointer for p's left child
            if (q->left)
            {
                // If q has right child, then right child is nextRight of
                // p and we also need to set nextRight of right child
                if (q->right)
                    q->left->nextRight = q->right;
                else
                    q->left->nextRight = getNextRight(q);
            }
 
            if (q->right)
                q->right->nextRight = getNextRight(q);
 
            // Set nextRight for other nodes in pre order fashion
            q = q->nextRight;
        }
 
        // start from the first node of next level
        if (p->left)
           p = p->left;
        else if (p->right)
           p = p->right;
        else
           p = getNextRight(p);
    }
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newnode(int data)
{
    struct node* node = (struct node*)
                        malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    node->nextRight = NULL;
 
    return(node);
}
 
/* Driver program to test above functions*/
int main()
{
 
    /* Constructed binary tree is
              10
            /   \
          8      2
        /         \
      3            90
    */
    struct node *root = newnode(10);
    root->left        = newnode(8);
    root->right       = newnode(2);
    root->left->left  = newnode(3);
    root->right->right       = newnode(90);
 
    // Populates nextRight pointer in all nodes
    connect(root);
 
    // Let us check the values of nextRight pointers
    printf("Following are populated nextRight pointers in the tree "
           "(-1 is printed if there is no nextRight) \n");
    printf("nextRight of %d is %d \n", root->data,
           root->nextRight? root->nextRight->data: -1);
    printf("nextRight of %d is %d \n", root->left->data,
           root->left->nextRight? root->left->nextRight->data: -1);
    printf("nextRight of %d is %d \n", root->right->data,
           root->right->nextRight? root->right->nextRight->data: -1);
    printf("nextRight of %d is %d \n", root->left->left->data,
           root->left->left->nextRight? root->left->left->nextRight->data: -1);
    printf("nextRight of %d is %d \n", root->right->right->data,
           root->right->right->nextRight? root->right->right->nextRight->data: -1);
 
    getchar();
    return 0;
}


Java




// Iterative Java program to connect nodes at same level
// using constant extra space
  
// A binary tree node
class Node
{
    int data;
    Node left, right, nextRight;
  
    Node(int item)
    {
        data = item;
        left = right = nextRight = null;
    }
}
  
class BinaryTree
{
    Node root;
  
    /* This function returns the leftmost child of nodes at the same level
       as p. This function is used to getNExt right of p's right child
       If right child of is NULL then this can also be used for the
       left child */
    Node getNextRight(Node p)
    {
        Node temp = p.nextRight;
  
        /* Traverse nodes at p's level and find and return
           the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
                return temp.left;
            if (temp.right != null)
                return temp.right;
            temp = temp.nextRight;
        }
  
        // If all the nodes at p's level are leaf nodes then return NULL
        return null;
    }
  
    /* Sets nextRight of all nodes of a tree with root as p */
    void connect(Node p) {
        Node temp = null;
  
        if (p == null)
            return;
  
        // Set nextRight for root
        p.nextRight = null;
  
        // set nextRight of all levels one by one
        while (p != null)
        {
            Node q = p;
  
            /* Connect all children nodes of p and children nodes of all other
               nodes at same level as p */
            while (q != null)
            {
                // Set the nextRight pointer for p's left child
                if (q.left != null)
                {
                  
                    // If q has right child, then right child is nextRight of
                    // p and we also need to set nextRight of right child
                    if (q.right != null)
                        q.left.nextRight = q.right;
                    else
                        q.left.nextRight = getNextRight(q);
                }
  
                if (q.right != null)
                    q.right.nextRight = getNextRight(q);
  
                // Set nextRight for other nodes in pre order fashion
                q = q.nextRight;
            }
  
            // start from the first node of next level
            if (p.left != null)
                p = p.left;
            else if (p.right != null)
                p = p.right;
            else
                p = getNextRight(p);
        }
    }
     
    /* Driver program to test above functions */
    public static void main(String args[])
    {
         /* Constructed binary tree is
                 10
               /   \
             8      2
           /         \
         3            90
        */
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.right.right = new Node(90);
  
        // Populates nextRight pointer in all nodes
        tree.connect(tree.root);
          
        // Let us check the values of nextRight pointers
        int a = tree.root.nextRight != null ?
                                     tree.root.nextRight.data : -1;
        int b = tree.root.left.nextRight != null ?
                                 tree.root.left.nextRight.data : -1;
        int c = tree.root.right.nextRight != null ?
                                tree.root.right.nextRight.data : -1;
        int d = tree.root.left.left.nextRight != null ?
                                  tree.root.left.left.nextRight.data : -1;
        int e = tree.root.right.right.nextRight != null ?
                                   tree.root.right.right.nextRight.data : -1;
          
        // Now lets print the values
        System.out.println("Following are populated nextRight pointers in "
                + " the tree(-1 is printed if there is no nextRight)");
        System.out.println("nextRight of " + tree.root.data + " is " + a);
        System.out.println("nextRight of " + tree.root.left.data
                                                       + " is " + b);
        System.out.println("nextRight of " + tree.root.right.data +
                                                           " is " + c);
        System.out.println("nextRight of " + tree.root.left.left.data +
                                                            " is " + d);
        System.out.println("nextRight of " + tree.root.right.right.data +
                                                             " is " + e);
    }
}
 
// This code has been contributed by Mayank Jaiswal


Python3




# Iterative Python program to connect nodes
# at same level using constant extra space
 
# Helper class that allocates a new node
# with the given data and None left and
# right pointers.
class newnode:
    def __init__(self,data):
        self.data = data
        self.left = None
        self.right = None
        self.nextRight = None
         
# This function returns the leftmost child of 
# nodes at the same level as p. This function
# is used to getNExt right of p's right child
# If right child of is None then this can also
# be used for the left child
def getNextRight(p):
    temp = p.nextRight
 
    # Traverse nodes at p's level and find
    # and return the first node's first child
    while (temp != None):
        if (temp.left != None):
            return temp.left
        if (temp.right != None):
            return temp.right
        temp = temp.nextRight
 
    # If all the nodes at p's level are
    # leaf nodes then return None
    return None
 
# Sets nextRight of all nodes of a tree
# with root as p
def connect(p):
    temp = None
 
    if (not p):
        return
 
    # Set nextRight for root
    p.nextRight = None
 
    # set nextRight of all levels one by one
    while (p != None):
        q = p
 
        # Connect all children nodes of p and
        # children nodes of all other nodes
        # at same level as p
        while (q != None):
             
            # Set the nextRight pointer for
            # p's left child
            if (q.left):
                 
                # If q has right child, then right
                # child is nextRight of p and we
                # also need to set nextRight of
                # right child
                if (q.right):
                    q.left.nextRight = q.right
                else:
                    q.left.nextRight = getNextRight(q)
 
            if (q.right):
                q.right.nextRight = getNextRight(q)
 
            # Set nextRight for other nodes in
            # pre order fashion
            q = q.nextRight
 
        # start from the first node
        # of next level
        if (p.left):
            p = p.left
        elif (p.right):
            p = p.right
        else:
            p = getNextRight(p)
 
# Driver Code
if __name__ == '__main__':
 
    # Constructed binary tree is
    #         10
    #     / \
    #     8     2
    # /         \
    # 3         90
    root = newnode(10)
    root.left     = newnode(8)
    root.right     = newnode(2)
    root.left.left = newnode(3)
    root.right.right     = newnode(90)
 
    # Populates nextRight pointer in all nodes
    connect(root)
 
    # Let us check the values of nextRight pointers
    print("Following are populated nextRight "
          "pointers in the tree (-1 is printed "
          "if there is no nextRight) \n")
    print("nextRight of", root.data,
                    "is", end = " ")
    if root.nextRight:
        print(root.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.left.data,
                         "is", end = " ")
    if root.left.nextRight:
        print(root.left.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.right.data,
                          "is", end = " ")
    if root.right.nextRight:
        print(root.right.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.left.left.data,
                              "is", end = " ")
    if root.left.left.nextRight:
        print(root.left.left.nextRight.data)
    else:
        print(-1)
    print("nextRight of", root.right.right.data,
                                "is", end = " ")
    if root.right.right.nextRight:
        print(root.right.right.nextRight.data)
    else:
        print(-1)
 
# This code is contributed by PranchalK


C#




using System;
 
// Iterative c# program to connect nodes at same level
// using constant extra space
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right, nextRight;
 
    public Node(int item)
    {
        data = item;
        left = right = nextRight = null;
    }
}
 
public class BinaryTree
{
    public Node root;
 
    /* This function returns the leftmost child of nodes at the same level
       as p. This function is used to getNExt right of p's right child
       If right child of is NULL then this can also be used for the 
       left child */
    public virtual Node getNextRight(Node p)
    {
        Node temp = p.nextRight;
 
        /* Traverse nodes at p's level and find and return
           the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
            {
                return temp.left;
            }
            if (temp.right != null)
            {
                return temp.right;
            }
            temp = temp.nextRight;
        }
 
        // If all the nodes at p's level are leaf nodes then return NULL
        return null;
    }
 
    /* Sets nextRight of all nodes of a tree with root as p */
    public virtual void connect(Node p)
    {
        Node temp = null;
 
        if (p == null)
        {
            return;
        }
 
        // Set nextRight for root
        p.nextRight = null;
 
        // set nextRight of all levels one by one
        while (p != null)
        {
            Node q = p;
 
            /* Connect all children nodes of p and children nodes of all other
               nodes at same level as p */
            while (q != null)
            {
                // Set the nextRight pointer for p's left child
                if (q.left != null)
                {
 
                    // If q has right child, then right child is nextRight of
                    // p and we also need to set nextRight of right child
                    if (q.right != null)
                    {
                        q.left.nextRight = q.right;
                    }
                    else
                    {
                        q.left.nextRight = getNextRight(q);
                    }
                }
 
                if (q.right != null)
                {
                    q.right.nextRight = getNextRight(q);
                }
 
                // Set nextRight for other nodes in pre order fashion
                q = q.nextRight;
            }
 
            // start from the first node of next level
            if (p.left != null)
            {
                p = p.left;
            }
            else if (p.right != null)
            {
                p = p.right;
            }
            else
            {
                p = getNextRight(p);
            }
        }
    }
 
    /* Driver program to test above functions */
    public static void Main(string[] args)
    {
         /* Constructed binary tree is
                 10
               /   \
             8      2
           /         \
         3            90
        */
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.right.right = new Node(90);
 
        // Populates nextRight pointer in all nodes
        tree.connect(tree.root);
 
        // Let us check the values of nextRight pointers
        int a = tree.root.nextRight != null ? tree.root.nextRight.data : -1;
        int b = tree.root.left.nextRight != null ? tree.root.left.nextRight.data : -1;
        int c = tree.root.right.nextRight != null ? tree.root.right.nextRight.data : -1;
        int d = tree.root.left.left.nextRight != null ? tree.root.left.left.nextRight.data : -1;
        int e = tree.root.right.right.nextRight != null ? tree.root.right.right.nextRight.data : -1;
 
        // Now lets print the values
        Console.WriteLine("Following are populated nextRight pointers in " + " the tree(-1 is printed if there is no nextRight)");
        Console.WriteLine("nextRight of " + tree.root.data + " is " + a);
        Console.WriteLine("nextRight of " + tree.root.left.data + " is " + b);
        Console.WriteLine("nextRight of " + tree.root.right.data + " is " + c);
        Console.WriteLine("nextRight of " + tree.root.left.left.data + " is " + d);
        Console.WriteLine("nextRight of " + tree.root.right.right.data + " is " + e);
    }
}
 
  // This code is contributed by Shrikant13


Javascript




<script>
     
    // Iterative Javascript program to connect nodes at same level
    // using constant extra space
     
    class Node
    {
        constructor(item) {
              this.data = item;
            this.left = null;
            this.right = null;
            this.nextRight = null;
        }
    }
     
    let root;
   
    /* This function returns the leftmost
    child of nodes at the same level
    as p. This function is used to getNExt right of p's right child
    If right child of is NULL then this can also be used for the
    left child */
    function getNextRight(p)
    {
        let temp = p.nextRight;
   
        /* Traverse nodes at p's level and find and return
           the first node's first child */
        while (temp != null)
        {
            if (temp.left != null)
                return temp.left;
            if (temp.right != null)
                return temp.right;
            temp = temp.nextRight;
        }
   
        // If all the nodes at p's level are
        // leaf nodes then return NULL
        return null;
    }
   
    /* Sets nextRight of all nodes of a tree with root as p */
    function connect(p) {
        let temp = null;
   
        if (p == null)
            return;
   
        // Set nextRight for root
        p.nextRight = null;
   
        // set nextRight of all levels one by one
        while (p != null)
        {
            let q = p;
   
            /* Connect all children nodes of p and
               children nodes of all other
               nodes at same level as p */
            while (q != null)
            {
                // Set the nextRight pointer for p's left child
                if (q.left != null)
                {
                   
                    // If q has right child, then
                    // right child is nextRight of
                    // p and we also need to set
                    // nextRight of right child
                    if (q.right != null)
                        q.left.nextRight = q.right;
                    else
                        q.left.nextRight = getNextRight(q);
                }
   
                if (q.right != null)
                    q.right.nextRight = getNextRight(q);
   
                // Set nextRight for other nodes
                // in pre order fashion
                q = q.nextRight;
            }
   
            // start from the first node of next level
            if (p.left != null)
                p = p.left;
            else if (p.right != null)
                p = p.right;
            else
                p = getNextRight(p);
        }
    }
     
    /* Constructed binary tree is
                 10
               /   \
             8      2
           /         \
         3            90
        */
    root = new Node(10);
    root.left = new Node(8);
    root.right = new Node(2);
    root.left.left = new Node(3);
    root.right.right = new Node(90);
 
    // Populates nextRight pointer in all nodes
    connect(root);
 
    // Let us check the values of nextRight pointers
    let a = root.nextRight != null ?
      root.nextRight.data : -1;
    let b = root.left.nextRight != null ?
      root.left.nextRight.data : -1;
    let c = root.right.nextRight != null ?
      root.right.nextRight.data : -1;
    let d = root.left.left.nextRight != null ?
      root.left.left.nextRight.data : -1;
    let e = root.right.right.nextRight != null ?
      root.right.right.nextRight.data : -1;
 
    // Now lets print the values
    document.write("Following are populated nextRight pointers in "
            + " the tree(-1 is printed if there is no nextRight)" +
                   "</br>");
    document.write("nextRight of " + root.data + " is " + a +
                                  "</br>");
    document.write("nextRight of " + root.left.data
                       + " is " + b + "</br>");
    document.write("nextRight of " + root.right.data +
                       " is " + c + "</br>");
    document.write("nextRight of " + root.left.left.data +
                       " is " + d + "</br>");
    document.write("nextRight of " + root.right.right.data +
                       " is " + e + "</br>");
   
</script>


Output

Following are populated nextRight pointers in the tree (-1 is printed if there is no nextRight) 
nextRight of 10 is -1
nextRight of 8 is 2
nextRight of 2 is -1
nextRight of 3 is 90
nextRight of 90 is -1

Time Complexity : O(n)
Auxiliary Space: O(1)



Last Updated : 19 Feb, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads